82 research outputs found

    Biomarker lists stability in genomic studies: analysis and improvement by prior biological knowledge integration into the learning process

    Get PDF
    The analysis of high-throughput sequencing, microarray and mass spectrometry data has been demonstrated extremely helpful for the identification of those genes and proteins, called biomarkers, helpful for answering to both diagnostic/prognostic and functional questions. In this context, robustness of the results is critical both to understand the biological mechanisms underlying diseases and to gain sufficient reliability for clinical/pharmaceutical applications. Recently, different studies have proved that the lists of identified biomarkers are poorly reproducible, making the validation of biomarkers as robust predictors of a disease a still open issue. The reasons of these differences are referable to both data dimensions (few subjects with respect to the number of features) and heterogeneity of complex diseases, characterized by alterations of multiple regulatory pathways and of the interplay between different genes and the environment. Typically in an experimental design, data to analyze come from different subjects and different phenotypes (e.g. normal and pathological). The most widely used methodologies for the identification of significant genes related to a disease from microarray data are based on computing differential gene expression between different phenotypes by univariate statistical tests. Such approach provides information on the effect of specific genes as independent features, whereas it is now recognized that the interplay among weakly up/down regulated genes, although not significantly differentially expressed, might be extremely important to characterize a disease status. Machine learning algorithms are, in principle, able to identify multivariate nonlinear combinations of features and have thus the possibility to select a more complete set of experimentally relevant features. In this context, supervised classification methods are often used to select biomarkers, and different methods, like discriminant analysis, random forests and support vector machines among others, have been used, especially in cancer studies. Although high accuracy is often achieved in classification approaches, the reproducibility of biomarker lists still remains an open issue, since many possible sets of biological features (i.e. genes or proteins) can be considered equally relevant in terms of prediction, thus it is in principle possible to have a lack of stability even by achieving the best accuracy. This thesis represents a study of several computational aspects related to biomarker discovery in genomic studies: from the classification and feature selection strategies to the type and the reliability of the biological information used, proposing new approaches able to cope with the problem of the reproducibility of biomarker lists. The study has highlighted that, although reasonable and comparable classification accuracy can be achieved by different methods, further developments are necessary to achieve robust biomarker lists stability, because of the high number of features and the high correlation among them. In particular, this thesis proposes two different approaches to improve biomarker lists stability by using prior information related to biological interplay and functional correlation among the analyzed features. Both approaches were able to improve biomarker selection. The first approach, using prior information to divide the application of the method into different subproblems, improves results interpretability and offers an alternative way to assess lists reproducibility. The second, integrating prior information in the kernel function of the learning algorithm, improves lists stability. Finally, the interpretability of results is strongly affected by the quality of the biological information available and the analysis of the heterogeneities performed in the Gene Ontology database has revealed the importance of providing new methods able to verify the reliability of the biological properties which are assigned to a specific feature, discriminating missing or less specific information from possible inconsistencies among the annotations. These aspects will be more and more deepened in the future, as the new sequencing technologies will monitor an increasing number of features and the number of functional annotations from genomic databases will considerably grow in the next years.L’analisi di dati high-throughput basata sull’utilizzo di tecnologie di sequencing, microarray e spettrometria di massa si è dimostrata estremamente utile per l’identificazione di quei geni e proteine, chiamati biomarcatori, utili per rispondere a quesiti sia di tipo diagnostico/prognostico che funzionale. In tale contesto, la stabilità dei risultati è cruciale sia per capire i meccanismi biologici che caratterizzano le malattie sia per ottenere una sufficiente affidabilità per applicazioni in campo clinico/farmaceutico. Recentemente, diversi studi hanno dimostrato che le liste di biomarcatori identificati sono scarsamente riproducibili, rendendo la validazione di tali biomarcatori come indicatori stabili di una malattia un problema ancora aperto. Le ragioni di queste differenze sono imputabili sia alla dimensione dei dataset (pochi soggetti rispetto al numero di variabili) sia all’eterogeneità di malattie complesse, caratterizzate da alterazioni di più pathway di regolazione e delle interazioni tra diversi geni e l’ambiente. Tipicamente in un disegno sperimentale, i dati da analizzare provengono da diversi soggetti e diversi fenotipi (e.g. normali e patologici). Le metodologie maggiormente utilizzate per l’identificazione di geni legati ad una malattia si basano sull’analisi differenziale dell’espressione genica tra i diversi fenotipi usando test statistici univariati. Tale approccio fornisce le informazioni sull’effetto di specifici geni considerati come variabili indipendenti tra loro, mentre è ormai noto che l’interazione tra geni debolmente up/down regolati, sebbene non differenzialmente espressi, potrebbe rivelarsi estremamente importante per caratterizzare lo stato di una malattia. Gli algoritmi di machine learning sono, in linea di principio, capaci di identificare combinazioni non lineari delle variabili e hanno quindi la possibilità di selezionare un insieme più dettagliato di geni che sono sperimentalmente rilevanti. In tale contesto, i metodi di classificazione supervisionata vengono spesso utilizzati per selezionare i biomarcatori, e diversi approcci, quali discriminant analysis, random forests e support vector machines tra altri, sono stati utilizzati, soprattutto in studi oncologici. Sebbene con tali approcci di classificazione si ottenga un alto livello di accuratezza di predizione, la riproducibilità delle liste di biomarcatori rimane ancora una questione aperta, dato che esistono molteplici set di variabili biologiche (i.e. geni o proteine) che possono essere considerati ugualmente rilevanti in termini di predizione. Quindi in teoria è possibile avere un’insufficiente stabilità anche raggiungendo il massimo livello di accuratezza. Questa tesi rappresenta uno studio su diversi aspetti computazionali legati all’identificazione di biomarcatori in genomica: dalle strategie di classificazione e di feature selection adottate alla tipologia e affidabilità dell’informazione biologica utilizzata, proponendo nuovi approcci in grado di affrontare il problema della riproducibilità delle liste di biomarcatori. Tale studio ha evidenziato che sebbene un’accettabile e comparabile accuratezza nella predizione può essere ottenuta attraverso diversi metodi, ulteriori sviluppi sono necessari per raggiungere una robusta stabilità nelle liste di biomarcatori, a causa dell’alto numero di variabili e dell’alto livello di correlazione tra loro. In particolare, questa tesi propone due diversi approcci per migliorare la stabilità delle liste di biomarcatori usando l’informazione a priori legata alle interazioni biologiche e alla correlazione funzionale tra le features analizzate. Entrambi gli approcci sono stati in grado di migliorare la selezione di biomarcatori. Il primo approccio, usando l’informazione a priori per dividere l’applicazione del metodo in diversi sottoproblemi, migliora l’interpretabilità dei risultati e offre un modo alternativo per verificare la riproducibilità delle liste. Il secondo, integrando l’informazione a priori in una funzione kernel dell’algoritmo di learning, migliora la stabilità delle liste. Infine, l’interpretabilità dei risultati è fortemente influenzata dalla qualità dell’informazione biologica disponibile e l’analisi delle eterogeneità delle annotazioni effettuata sul database Gene Ontology rivela l’importanza di fornire nuovi metodi in grado di verificare l’attendibilità delle proprietà biologiche che vengono assegnate ad una specifica variabile, distinguendo la mancanza o la minore specificità di informazione da possibili inconsistenze tra le annotazioni. Questi aspetti verranno sempre più approfonditi in futuro, dato che le nuove tecnologie di sequencing monitoreranno un maggior numero di variabili e il numero di annotazioni funzionali derivanti dai database genomici crescer`a considerevolmente nei prossimi anni
    • …
    corecore